Selective Prediction of Financial Trends with Hidden Markov Models
نویسندگان
چکیده
Focusing on short term trend prediction in a financial context, we consider the problem of selective prediction whereby the predictor can abstain from prediction in order to improve performance. We examine two types of selective mechanisms for HMM predictors. The first is a rejection in the spirit of Chow’s well-known ambiguity principle. The second is a specialized mechanism for HMMs that identifies low quality HMM states and abstain from prediction in those states. We call this model selective HMM (sHMM). In both approaches we can trade-off prediction coverage to gain better accuracy in a controlled manner. We compare performance of the ambiguity-based rejection technique with that of the sHMM approach. Our results indicate that both methods are effective, and that the sHMM model is superior.
منابع مشابه
A Hidden Markov Model Approach to Classify and Predict the Sign of Financial Local Trends
In the field of financial time series analysis it is widely accepted that the returns (price variations) are unpredictable in the long period [1]; nevertheless, this unappealing constraint could be somehow relaxed if sufficiently short time intervals are considered. In this paper this alternative scenario is investigated with a novel methodology, aimed at analyzing short (local) financial trend...
متن کاملPredicting future trends in stock market by decision tree rough-set based hybrid system with HHMM
Around the world, trading in the stock market has gained huge attractiveness as a means through which, one can obtain vast profits. Attempting to profitably and precisely predict the financial market has long engrossed the interests and attention of bankers, economists and scientists alike. Stock market prediction is the act of trying, to determine the future value of a company’s stock or other...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملClimate change scenarios generated by using GCM outputs and statistical downscaling in an arid region
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...
متن کاملاستفاده از مدل مارکوف پنهان در پیشبینی موارد جدید سل در استان همدان بر اساس اطلاعات موارد ثبت شده طی سالهای 94-1384
Background and Objectives: Tuberculosis is a chronic bacterial disease and a major cause of morbidity and mortality. It is caused by a Mycobacterium tuberculosis. Awareness of the incidence and number of new cases of the disease is valuable information for revising the implemented programs and development indicators. time series and regression are commonly used models for prediction but these m...
متن کامل